SIMULATION OF MANUFACTURING AND LOGISTICS SYSTEMS FOR THE 21TH CENTURY

Abstract
This paper deals with computer simulation of manufacturing systems. It contains the basic simulation theory and principles of a simulation project management. Furthermore the authors introduced the idea of parametric simulation model, followed by special application areas of simulation, e.g. scheduling, emulation, metamodelling. The paper discusses the possibility to utilize a cloud computing technology in simulation. The case example of the application of simulation by the optimization of real production system concludes the working part of paper. The final part summarizes benefits and recommendations.

1. INTRODUCTION

If today's enterprises want to stay on the market and be winners in competition they have to respond flexibly to the requirements of market environment, whether requirements for changes of production program, outputs, or loading and managing changes of the system. This relates to the detailed production planning and taking quick and correct decisions.

Currently, it is axiomatic to solve complex problems by an appropriate computer model that reflects characteristics of a real system or helps to find a solution close to optimal, or directly optimal, for existing or conceptual systems. Therefore, a computer simulation is still gaining major importance. It allows quick testing of various variants of solutions and it minimizes the risk of wrong decisions. This is reflected to considerable economic benefits.

2. SIMULATION OF MANUFACTURING SYSTEMS

Simulation is a method involving the replacement of the dynamic system by its simulation model in order to:
- obtain information how modeled system works in given circumstances,

*Ing. Silvia Palajová, **Ing. Štefan Figa, ***prof. Ing. Milan Gregor, PhD.: University of Zilina, Faculty of Mechanical Engineering, Department of Industrial Engineering; Univezitná 1, 010 26 Žilina, Slovak Republic; e-mail: {silvia.palajova, stefan.figa, milan.gregor}@fstroj.uniza.sk
conduct experiments with it by the change of input parameters in order to detect how does the model behave, so how would the real system behave.

Such model includes only those characteristics of a real system which the analyst is interested in. After evaluation of results the analyst makes conclusions about the whole real system, based on experiments with the model.

Simulation overcomes many boundary conditions and limitations of analytical modeling procedures, and its use is justifiable especially in those cases where other solution options have failed.

2.1. Simulation Project

Simulation is not just to build a simulation model and the random "playing" with it on computer. It is needed to access the simulation as a project. Each project has to start with a thorough analysis of the problem and selecting appropriate methods and procedures for their solving. It means to determine whether and in what phase it is necessary to use simulation, or if simpler method is sufficient. This decision greatly affects the time and financial costs to fix the problem.

The simulation project includes the following general phases:
1. System analysis and problem definition, formulation of simulation's objectives. This phase includes preparation of requirements used to verify selected problems in designing and operation of manufacturing systems (e.g. dynamic permeability changes depending on range of goods changes and output changes, determination of shift influence on its flexibility and productivity, an alternative material flow in production system, tools flow and organization of tools assigning to technological workplace, identification of a narrow activities or elements of the production system, number and types of machines determination, etc.).
2. Collection and processing of process information, preparation of input data for model creating - estimates of the parameters and types of random variables distribution (Chi-square test).
3. An abstract logical model creating.
4. Construction of the model on a computer that is based on requirements formulation and on functional relationships of elements and activities of the real system.
5. Model verification and testing - verification and validation. It means to determine validity area of functional relationships (check the model from a logic view, extent of its validity, sensitivity for changes of its elements, etc.).

6. Planning and preparation of simulation experiments (pilot runs or short simulations, warm up period estimation, initial conditions determination, length of simulation run determination). Experiments should respect requirements of questions and issues set couched in the task.

7. Execution of simulation experiments with a change of factors in the model, perhaps even adjusting the model.

8. Evaluation and processing of experiments results, the final report.

2.2. Parametric Simulation Model

External information system (e.g. MS Excel) is often source of data for simulation model. It allows easy transfer and data processing, and it facilitates manipulation with data in database of the model. Parametric simulation model is a practical tool for finding problems' causes of the selected type of manufacturing systems, created for selected input variables. After modeling and entering the specific characteristics of production system (such a service time for each workstation, the way of parts arrival to the workstation, the transportation size, the way of manufacturing system control, etc.) can the process be simulated with sufficient precision. The analyst can also directly see critical points of production process and simulate various possibilities for their removal.

The obtained results, in the form of tables or graphs, are after execution of simulation experiments automatically transferred to external information system and on their base optimization of real system can be done. All this can be carried out without detailed knowledge of modeling and simulation methods and without deep knowledge about simulation software.
The current research intention of The University of Zilina in cooperation with the Central European Institute of Technology (CEIT) is to develop a complex simulator of production system, which will include progressive tools described below. The development of simulation tools at the University of Zilina dates back to 1984, when simulation models were programmed. Later it was a design of simulation model with the use of Petri’s nets, simulation of complex manufacturing and production management. Nowadays top commercially available simulation software systems are in use and the main effort is focused in development of supportive modules like: AGV simulator, optimization module GASFOS II, emulation, metamodelling and scheduling. The result is a complex simulator that is easily useable and implementable in a wide range of applications.

3. PROGRESSIVE APPROACHES IN SIMULATION OF MANUFACTURING SYSTEMS

3.1. Scheduling and Simulation

The production process of manufacturing enterprises has always been a key factor for overall business success. Production scheduling problems are facing thousands of companies all over the world that are engaged in the production of material goods. Therefore, the solution of production scheduling problems effectively and efficiently has attracted the interest of many experts and researchers from both fields of production control and combinatorial optimization.

The scheduling can be described as the allocation of available resources over time to meet the performance criteria defined in a domain. Typically, a scheduling handles a set of jobs to be completed, whereas each job consists of a set of operations. Each operation is performed by specific resources such as machines and operators. In terms of scheduling theory, most of scheduling problems are in the class of NP (non-deterministic polynomial-time) hard (Pinedo, 2002).

Scheduling using Simulation and Evolutionary Methods (SSEM) consists of three modules, which are necessary for generating, evaluating and optimizing production schedule. The first module was developed for generating a schedule respectively scheduling using priority rules. The second module was designed to evaluate production schedule with support of a parametric simulation model and the third module executes the implementation of evolutionary optimization methods to get better solutions.

The conceptual system architecture of the SSEM is represented in Figure 3, which shows its three main modules. The flow of information among given modules is represented by the directed arrows. The input data can be provided from the production database systems such as Enterprise Resource Planning (ERP) system or Manufacturing Enterprise System (MES). The obtained output is the schedule optimized according to the selected criterion value (for example minimization of makespan).
Fig. 3. Conceptual SSEM Architecture

A more detailed description of individual modules can be found in (Figa, 2011), which describes the various modules necessary to generate, to evaluate and to optimize the production schedule. Proposed methodology can be used as the practical tool for manager in a practice for a quick identification of bottlenecks in the generated schedule to minimize production costs.

3.2. Emulation

Apart from production planning management, production management requires current information about real manufacturing process (feedback from the manufacturing process) in a real time. The systems collecting data from a manufacturing process inform about the current states of production facilities. They also provide an opportunity to intervene in production process and affect it, to change real system’s settings on computer.

The emulation means connecting a real system with its parametric simulation model and loading the data directly from a real system into a model database (possible by using sensors connected via a control unit in computer). In addition to simplify data handling this system allows to change settings of a real system (a vector of input factors) on computer using excel interface which eliminates need for knowledge of simulation program. Fundamental of emulation is that the simulation model is a substitute of real, missing module, respectively elements of comprehensive simulation model are gradually replaced by real devices.

The main advantage of this purpose is rapid determination of the effect of changes in guiding principles of production on a virtual model, which is in direct connection to the real production system. Emulation environment can monitor production respectively logistic
system, evaluate collected data in real-time, update the model on the base of data from a real system, and execute experiments on accurate, updated and verified simulation model.

3.3. Simulation Metamodelling

Simulation runs are usually computationally difficult and it is not unusual for complex simulation models that they last for hours. For practical applications of simulation optimization it is important that the optimization process is constrained within reasonable time limits and the efficiency of the optimization process is crucial. One of the possible ways how to enhance effectiveness of simulation optimization and reduce the requirements of time-consuming simulation is to use computationally cheap metamodels (Persson, 2010).

Simulation metamodel (Barton, 1992) is a model of simulation model and it explains the fundamental nature of the system’s input-output relationships through simple mathematical functions:

\[
Y = f(X, \beta) + \varepsilon
\]

(1)

- Y – dependent variable,
- X – vector of values of input factors,
- β – regression function,
- ε - vector of random numbers.

This relationship is the regression model that expresses free (stochastic) dependence between explanatory variables X and explaining variable Y. It means that for one particular combination of values of independent variables X may depend variable Y acquire different values. It is caused by an influence of random events ε.

Fig. 4. Real System - Simulation Model - MS Excel Interface (Palajová, 2011)
The metamodel creation (see Figure 5) begins with a simulation model which is preceded by defining the problem, defining the scope of input variables, the draft of the plan of experiments. After construction of a computer simulation model, its validation and verification is made, so logical structure of the model with respect to real system is proved. Then predefined number of replications for different input values is executed with the simulation model. In order to continue in metamodel development process the analyst has to be sure that data are sufficiently independent.

In the next step, output data from the simulation are collected. In order to simplify the metamodel it is possible to combine some of the entries and remove those which have proved to be needless. These results are used for deriving a statistical model in the form of regression.

The heart of metamodelling is to determine a vector \(\beta = (\beta_1, \beta_2, \ldots, \beta_p) \) which is a set of coefficients that determine regression function. Method of least squares is the most common method for estimation of regression functions. It is used for calculation of functions, providing its estimation is linear in parameters or it can be achieved by simple transformation. The values of the vector \(\beta \) are used for creating of curves that describe the metamodel. In order to check a suitability of the metamodel for intended purposes, validation of the metamodel (by comparison of metamodel with simulation output data using mathematical statistics) is done. The graphical representation of metamodel's inputs – outputs relationships provides a simple presentation of expected system behavior, often known as the approximate control.

Simulation metamodelling is an appropriate managing and optimizing tool for complex manufacturing systems. The research work (Hromada, 2004) was done at the Department of Industrial Engineering of the University of Žilina and it deals with the system analysis of input factors influence on the performance of manufacturing system. This approach uses computer simulation and metamodelling principles, and proposed methods were verified.
in practical conditions. Other publications focus on metamodelling as a support tool in the frame of Digital Factory (Gregor, 2008a), as a practical approach for a statistical summary of simulation results (Gregor, 2005), (Gregor, 2008b), or as a support tool for designing and testing the control principles in production (Škorík, 2010). Theoretical assumptions and developments were validated on the chosen production system. Principles of experimental concept of production management with simulation metamodelling application are shown in Figure 6.

Fig. 6. Possible Configuration for Decision Support (Gregor, 2010)

3.4. Cloud Computing

One of the main problems why companies do not use simulation approaches is their high cost. One of the possible ways how to resolve this problem is to use cloud computing, a particular type of service providing called „Software as a Service - SaaS“. It means that software (in our case simulation software and its modules) is provided as a service. Hence the company avoids any need to own such software, whereby costs connected with the special software purchase and employees training are significantly reduced. The difference between traditional approach of software delivery and SaaS model is shown in Figures 7 and 8, respectively.
The traditional software requires local storage of data, whether on local disks or network resources. Servers, databases and other key elements of IT infrastructure are situated on the right side from the firewall "local network". In contrast, in the SaaS applications can be many of these resources outsourced and safely accessible via the Internet. They store clients' data into "cloud", what is a general term used for outsourced storage and computer equipment used for support of most of the web sites and applications.

The principle of such approach functioning in terms of simulation exploitation shows Figure 9.

Customers simply open excel interface where they set required parameters (such as production orders, availability of machines, workers, etc.) and initialized input parameters are loaded to the simulation model (located on a server in an external company) by using the Web interface. Simulation runs on this external server. After simulation the customer has available production system's statistics which he either accept or select another evaluative criterion to obtain better solution. So customer can flexibly respond to changes in the production environment and quickly incorporate them into the production.
Another advantage of this approach for users is that the responsibility for the system and potential problems are fully at the SaaS provider site.

4. CASE STUDY

Presented case study demonstrates one of the progressive approaches named “emulation” which was used in implementation of the FTS-CEIT AGV systems, developed in CEIT.

Simulation model was created on the basis of technological design of logistics system, using the autonomous conveyor system. The base of autonomous conveyor system consists of three main elements (Figure 10): FTS-CEIT AGV, dynamic conveyor and static conveyor. FTS-CEIT AGV is coupled with dynamic conveyors. Material is automatically imported from warehouse to the assembly line using dynamic conveyor. Transfer of material between dynamic conveyors and lines respectively warehouse is ensured through static conveyors, which are located in unloading and loading positions. The assembly line operator calls loaded AGV remotely as needed from waiting position.

The basic prerequisite for proper functionality of logistics system is the cycle of assembly line with value of 1.1 minutes. One FTS-CEIT AGV can trail 5 or 3 dynamic conveyors (depending on variant of simulation model). Each palette has 20 pieces of specific door panels. Automatic unloading/loading of dynamic conveyor takes 20 seconds and transport speed of FTS-CEIT AGV is 1 m/s for straight track, 0.2 m/s for smaller curves, 0.3 m/s for larger curves, 0.1 m/s for loading/unloading zone, traction ratio (charging time/driving time) = 1/5. The behavior of system is shown in Figure 11.

Three variants of logistic system have been designed within experiments, which can abide requirements of cycle time of assembly line. Particular variants vary by number of trucks serving logistics system and number of dynamic conveyor systems:

- **Variant 1** – one FTS-CEIT AGV and five trailed dynamic conveyors,
- **Variant 2** – two FTS-CEIT AGVs and each AGV trails five dynamic conveyors,
- **Variant 3** - two FTS-CEIT AGVs and each AGV trails three dynamic conveyors.
The FTS-CEIT AGVs supply all assembly workplaces in variants 1 and 2. The first FTS CEIT AGV supplies assembly workplace with right door panels in variant 3 and the second FTS-CEIT AGV supplies assembly workplace with left door panels.

![Diagram](image)

Fig. 11. Basic Principle of the Simulation Model

The following parameters have been monitored to compare usage of AGVs:
- **Idle** - the percentage time that the vehicle was idle,
- **Transfer** - the percentage time that the vehicle spent loading and unloading, including the time that the vehicle spent attempting to load or unload,
- **Loaded** - the percentage time that the vehicle was loaded with parts,
- **Stop** - the percentage time that the vehicle was stopped impact of random collision situations or was recharged,
- **Waiting** - the percentage time that the vehicle was waiting for call.

The following table shows statistics on the effectiveness of FTS-CEIT AGVs in different variants.

Tab.1 The efficiency of FTS-CEIT AGVs

<table>
<thead>
<tr>
<th>Name of parameter/Variant</th>
<th>Variant 1</th>
<th>Variant 2</th>
<th>Variant 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AGV</td>
<td>AGV 1</td>
<td>AGV 2</td>
</tr>
<tr>
<td>Idle [%]</td>
<td>15.38</td>
<td>53.40</td>
<td>53.34</td>
</tr>
<tr>
<td>Transfer [%]</td>
<td>22.29</td>
<td>12.27</td>
<td>12.29</td>
</tr>
<tr>
<td>Loaded [%]</td>
<td>44.45</td>
<td>24.47</td>
<td>24.49</td>
</tr>
<tr>
<td>Stop [%]</td>
<td>17.88</td>
<td>9.87</td>
<td>9.87</td>
</tr>
<tr>
<td>Waiting [%]</td>
<td>0.00</td>
<td>44.87</td>
<td>44.83</td>
</tr>
</tbody>
</table>

The overall efficiency of AGVs is shown in the chart below (Figure 12) and was defined as a sum of times of all activities that were directly involved in a transport of pallets of door panels (%Idle + % Transfer + % Loaded + % Stop). Also the compliance requirement for cycle time of the assembly line can be seen in the Figure 12. Based on comparison of compliance of requirement for cycle of the assembly line variant 1 is not suitable, because the time, which
AGV needs to transport single circuit, is about 24 minutes and line required 22 minutes cycle time. This problem was corrected by increasing the number of FTS-CEIT AGVs (variants 2 and 3). Other variants comply with requirements of the production cycle of the system. By comparing of statistics and overall effectiveness of trucks, the best solution was variant 2. Variant 3 is suitable in terms of compliance requirement for cycle of the assembly line.

![Fig. 12. Simulation Statistics](image)

The three variants have been designed within experiments that were tested also in terms of action random collision situations:

- **Variant 1** - one FTS-CEIT AGV with efficiency of 100%, 5 dynamic conveyors needed, unrealized requirement of production cycle,
- **Variant 2** – two FTS-CEIT AGVs with average efficiency of 55,15%, 10 dynamic conveyors needed, realized requirement of production cycle,
- **Variant 3** - two FTS-CEIT AGVs with average efficiency of 87,77%, 6 dynamic conveyors needed, realized requirement of production cycle.

Each designed variants needed 16 static conveyors.

The simulation and emulation offered as a part of product in implementation of logistics systems FTS-CEIT has been shown as an excellent tool. The simulation helped to find not only required number of FTS-CEIT AGVs, but also it supported the identification of system bottlenecks and thanks to that the logistical system was developed which could fit all requirements for this system in pre-implementation phase.

5. CONCLUSION

Using an appropriate combination of particular approaches designer of manufacturing systems can flexibly respond to customer's requirements and provide them a tailored service. These progressive approaches are not groundbreaking ways in the use of simulation in terms of practice; they just make availability of such solution easier. In order to make simulation part of business systems, it is necessary to develop simplified application methods (interface between user and simulation) that enable rapid use of simulation in the commercial sector, not only in terms of research. The authors vision is to afford a simulation for simple problems
when they get rapidly a solution and so flexibly respond to turbulent changes. The simpler simulation for commercial sector is, the more it is in use.

The above mentioned progressive simulation approaches allow:

- to easily enter own values of elective variables (loading input data from an external source),
- to operate parametric simulation model by managers and operators in production shop,
- to test various managing and optimizing methods without deeper knowledge of modeling and simulation methods, and simulation software,
- to execute simulation runs and process optimization without possession of simulation software,
- to find the best solution of company problems in a very short time,
- to save financial resources.

The approaches described in this paper aim to the improvement of companies' interest in simulation of manufacturing and logistics systems.

References